stage to quartz sulfofication stage, the homogenization temperature and salinity of fluid inclusion decreased from 314–521℃ and 4.20–13.29 wt%, through 202–291℃ and 2.07%–13.51%, to 126–181℃ and 2.74%–7.17%. It is confirmed by Laser Raman spectroscopy and group inclusion analysis that the main ore-forming fluid was H₂O. The gas phase composition was mainly H₂O, followed by CO₂ and N₂, and the rest was a small amount of CH₄, C₂H₆, H₂S and Ar. The liquid phase composition was mainly Na⁺, K⁺, Cl⁻, SO₄²⁻, and a small amount of F⁻ and Ca²⁺. Hydrogen and oxygen isotopes indicate that the ore-forming fluid is a mixture of magmatic water and meteoric water. It is shown that the combined action of boiling, atmospheric water and reducing environment caused a large amount of precipitation of W, Mo and other metal minerals.

Key words: W-Mo deposit, ore-forming fluid, fluid inclusion, geochemistry, Jinfosi

Global Gold Mine Production Yields 30 Strong Rankings

Recently published the (Global Gold Yearbook 2020) (Chinese version), it provides a detailed introduction to the basic situation of the world's gold mining industry in 2019. The global gold mining production data has shown that in 2019, the gold mining industries of all countries worldwide produced a total of 1960 million ounces, with the industry's total cash costs and total maintenance costs amounting to $100 billion and each ounce $941. At the same time, the Yearbook has published the 2019 global gold mine production ranking.